Pregunta de: Exani II -> Pensamiento Matemático
Un cable de longitud \(L\) metros debe cumplir \(10L + 50 < 450\). ¿Cuál es la longitud máxima?
\(L < 40\)
\(L \le 40\)
\(L < 39\)
\(L > 40\)
Soluciones
0
Restamos 50: \(10L < 400\), dividiendo \(L < 40\). El cable debe medir menos de 40 metros.
Agregar una solución
No te pierdas la oportunidad de ayudar a los demás. ¡Regístrate o inicia sesión para agregar una solución!
Demuestra tu conocimiento
Ayuda a la comunidad respondiendo algunas preguntas.
¿Cuál es el menor número primo común en la descomposición …
¿Cuántos triángulos hay en la siguiente figura?
En un círculo unitario el seno de un ángulo θ …
¿Cuántos cubos chicos faltan para armar un cubo grande de …
Resuelve \(\begin{cases}2x-4y=-26 \\ -3x+2y=7\end{cases}\)
Observa la siguiente gráfica realizada a 10 personas. ¿Cuántas personas …
¿Cuál expresión permite calcular el valor del ángulo B?
Calcule el primer cuartil de los resultados de un estudio …
Es el resultado de la expresión 8 (-3 - 2 …
Clases X f F 3-5 4 2 2 5-7 6 …
Exani